Artículos - Ingeniería Ambiental
Permanent URI for this collection
Browse
Browsing Artículos - Ingeniería Ambiental by Title
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Combined treatment based on synergism between hydrodynamic cavitation and H2O2 for degradation of cyanide in effluents(Elsevier Ltd, 2021) Montalvo Andia J.P, J.P.; Ticona Cayte, A.E.B.; Illachura Rodriguez, J.M.B.; López Belón, L.A.; Cárdenas Málaga M.A.b, M.A.B.; Teixeira, L.A.C."The main purpose of this research has been to evaluate and optimize the application of hydrodynamic cavitation (HC), combined with hydrogen peroxide, as a promising process for the effective degradation of cyanide in aqueous effluents. The experimental work was carried out using cavitation equipment with a venturi device connected to a tubular circuit which allowed a closed-cycle flow to run for 120 min, in which the effect of control parameters as inlet pressure, H2O2:CN─ ratio, pH, and temperature have been evaluated for the treatment of solutions with initial cyanide concentration in range 100 to 550 mg L─1. The results showed that in optimal conditions cyanide degradation using only HC reached 70% and, using solely H2O2 as oxidizing agent it reached 63%. Efficiency of the combined treatment process was evaluated on the basis of their synergetic effect as it turned out to be more effective showing a 99.9 % cyanide degradation in less than 120 min. The optimum set of conditions that produced the highest degradation rate and efficiency was: inlet pressure 4 bar; pH 9.5; and H2O2:CN─ ratio = 1.5:1. The process was also evaluated on the basis of cavitational yield and in terms of energy and chemical treatment costs. The results have demonstrated that the combined treatment technology of HC + H2O2 can be effectively used as a fast and highly efficient treatment of wastewater containing cyanide."Item Distribution patterns, ecological niche and conservation status of endemic Tillandsia purpurea along the Peruvian coast(Springer, 2021) Villasante Benavides;, Francisco; Pauca-Tanco, G. Anthony; Luque-Fernández, C. R.; Quispe-Turpo, Johana del Pilar; Villegas Paredes, Luis N.; Siegmund, Alexander; Koch, Marcus A.Species distribution modeling and assessment of the possible current conservation status for loma-forming Tillandsia purpurea Ruiz & Pavón in Peru were performed. This species is considered an epiarenic species that lives under hyperarid conditions, where its main source of water and nutrients comes from the fog of the Pacific coast. For the distribution modeling, 63 records from different sources of information were used, including a current field survey. Locations covered the whole range of the species´ known distribution along the Peruvian coast, and respective elevations lie between 0 and 2000 m a. s. l. Likewise, 27 environmental variables were used, including bioclimatic and eco-geographical ones, to determine the corresponding ecological niche and compare between actual and potential distribution. The conservation status was estimated according to the criteria recommended by the IUCN red list. High probability values were obtained predicting the occurrence of T. purpurea and describing respective environmental conditions such as altitudinal distribution between 400 and 1200 m and predominant southwest exposure of habitats. The conservation status of T. purpurea was supposed between "least concern" and near threatened, recommending that this species should be placed into the latter category and considering recurrent threats by direct anthropogenic impact and climate change verified during the field surveys.Item Geographic distribution and conservation status of Eulychnia ritteri Cullmann (Cactaceae), an endemic cactus from southern Peru(Facultad de Ciencias Biologicas, Universidad Nacional Mayor de San Marcos, 2021) Pauca-Tanco, G.A.; Balvin, M.; Hoxey, P.; Quipuscoa, V.; Quispe-Turpo, J.D.P.Eulychnia ritteri is endemic to Peru, restricted to the northern coast of the department of Arequipa. The lack of knowledge of this species, and threats such as human activities and climate change, put the populations at risk. In this research, we examined the geographical distribution and conservation status of E. ritteri in the coastal area of the Caravelí province. In addition, the population structure and phenology in the Quebrada Vizcachani population were evaluated using plots of 10×100 m. Data on the accompanying flora and local fauna were also obtained. Eulychnia ritteri showed five populations distributed from 15°43' to 15°47'S, with a total area of 63.62 ha (0.63 km2). The Quebrada Vizcachani population is the largest (24.5 ha) and the Cementerio population the smallest (0.018 ha). The population density evaluated is 0.06 ind/m2, where seedlings, juveniles, adults, and dead plants were 3.61, 24.09, 56.63 and 15.67% respectively. The phenology was asynchronous, the flower buds, flowers and fruits appear in the same period. The flowers and fruits were food for insects and rodents respectively, and 18 accompanying species have been recorded. Finally, E. ritteri is categorised as endangered (EN), given its geographical distribution and identified threats. © Los autoresItem Mechanical Evaluation of Geopolymeric Mortars Reinforced with Alpaca Wool Fibers(Universidad Católica San Pablo, 2023) Rodríguez Guillén, Gerhard Paul; Cuzziramos Gutierréz, Fernando Alonso; Palomino Ñaupa, Cris KatherinReinforced geopolymeric mortars were obtained by mixing mine tailing, fine sand, alpaca wool fibers ( in variable amounts) sodium hydroxide and potable water, it was possible to verify the effect of the addition of alpaca wool on the mechanical behavior in uniaxial compression of the mortars studied. The mechanical data found revealed a systematic decrease in the maximum stress as the volume of wool added in the mortar mixtures manufactured increased. On the other hand, a higher degree of deformation was verified in mixtures with a greater volume of added fibers, reaching deformation values of up to 5%. The maximum strength values were in the range of 4 to 21 MPa for samples with 8 and 0 Vol. % of added fibers, respectively. Among the microstructural characteristics of the mortars studied, a continuous binder phase corresponding to the geopolymer could be appreciated, with sand particles and wool fibers dispersed within the binder phase. The real density and average porosity of the reinforced mortars were 2.65 g/cm3 and 32%, respectively.