Deep neural networks based on gating mechanism for open-domain question answering

dc.contributor.advisorOchoa Luna, José Eduardo
dc.contributor.authorArch Tijera, Drake Christian
dc.date.accessioned2019-04-08T17:16:45Z
dc.date.available2019-04-08T17:16:45Z
dc.date.issued2018
dc.description.abstractNowadays, Question Answering is being addressed from a reading comprehension approach. Usually, Machine Comprehension models are poweredby Deep Learning algorithms. Most related work faces the challenge by improving the Interaction Encoder, proposing several architectures strongly based on attention. In Contrast, few related work has focused on improving the Context Encoder. Thus, our work has explored in depth the Context Encoder. We propose a gating mechanism that controls the ow of information, from the Context Encoder towards Interaction Encoder. This gating mechanism is based on additional information computed previously. Our experiments has shown that our proposed model improved the performance of a competitive baseline model. Our single model reached 78.36% on F1 score and 69.1% on exact match metric, on the Stanford Question Answering benchmark.es_PE
dc.description.uriTrabajo de investigaciónes_PE
dc.formatapplication/pdfes_PE
dc.identifier.other1066708
dc.identifier.urihttps://hdl.handle.net/20.500.12590/15959
dc.language.isoenges_PE
dc.publisherUniversidad Católica San Pabloes_PE
dc.publisher.countryPEes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceUniversidad Católica San Pabloes_PE
dc.sourceRepositorio Institucional - UCSPes_PE
dc.subjectMachine Comprehensiones_PE
dc.subjectQuestion Answeringes_PE
dc.subjectNatural Languagees_PE
dc.subjectProcessinges_PE
dc.subjectDeep Learninges_PE
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.02.01es_PE
dc.titleDeep neural networks based on gating mechanism for open-domain question answeringes_PE
dc.typeinfo:eu-repo/semantics/masterThesis
thesis.degree.disciplineCiencia de la Computaciónes_PE
thesis.degree.grantorUniversidad Católica San Pablo. Facultad de Ingeniería y Computaciónes_PE
thesis.degree.levelMaestríaes_PE
thesis.degree.nameMaestro en Ciencia de la Computaciónes_PE
thesis.degree.programEscuela Profesional de Ciencia de la Computaciónes_PE
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ARCH_TIJERA_DRA_DEE.pdf
Size:
3.38 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: