Foreground detection using attention modules and a video encoding

dc.contributor.advisorMora Colque, Rensso Victor Hugo
dc.contributor.authorBenavides Arce, Anthony Alessandro
dc.date.accessioned2023-02-16T21:14:55Z
dc.date.available2023-02-16T21:14:55Z
dc.date.issued2023
dc.description.abstractForeground detection is the task of labelling the foreground (moving objects) or background (static scenario) pixels in the video sequence and it depends on the context of the scene. For many years, methods based on background model have been the most used approaches for detecting foreground; however, their methods are sensitive to error propagation from the first background model estimations. To address this problem, we proposed a U-net-based architecture with a feature attention module, where the encoding of the entire video sequence is used as the attention context to get features related to the background model. Furthermore, we added three spatial attention modules with the aim of highlighting regions with relevant features. We tested our network on sixteen scenes from the CDnet2014 dataset, with an average F-measure of 97.84. The results also show that our model outperforms traditional and neural networks methods. Thus, we demonstrated that feature and spatial attention modules on a U-net based architecture can deal with the foreground detection challenges. es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.identifier.other1076321
dc.identifier.urihttps://hdl.handle.net/20.500.12590/17445
dc.language.isoenges_PE
dc.publisherUniversidad Católica San Pabloes_PE
dc.publisher.countryPEes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceUniversidad Católica San Pabloes_PE
dc.sourceRepositorio Institucional - UCSPes_PE
dc.subjectForeground Detectiones_PE
dc.subjectU-Netes_PE
dc.subjectVideo Encodinges_PE
dc.subjectAttentiones_PE
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.02.01es_PE
dc.titleForeground detection using attention modules and a video encodinges_PE
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_PE
renati.advisor.dni42846291
renati.advisor.orcidhttps://orcid.org/0000-0003-4734-8752es_PE
renati.author.dni72685270
renati.discipline611016es_PE
renati.jurorCayllahua Cahuina, Edward Jorge Yuries_PE
renati.jurorYari Ramos, Yessenia Deysies_PE
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesional
renati.typehttps://purl.org/pe-repo/renati/type#tesis
thesis.degree.disciplineCiencia de la Computacónes_PE
thesis.degree.grantorUniversidad Católica San Pablo. Departamento de Ciencia de la Computaciónes_PE
thesis.degree.levelTítulo Profesionales_PE
thesis.degree.nameLicenciado en Ciencia de la Computaciónes_PE
thesis.degree.programEscuela Profesional de Ciencia de la Computaciónes_PE
Files
Original bundle
Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
BENAVIDES_ARCE_ANT_FOR.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
TURNITIN_BENAVIDES_ARCE_ANT.pdf
Size:
10.07 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
QOLQA_BENAVIDES_ARCE_ANT.pdf
Size:
713.79 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
ACTA_BENAVIDES_ARCE_ANT.pdf
Size:
748.26 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: