Learning how to extract rotation-invariant and scale-invariant features from texture images
dc.contributor.author | Montoya Zegarra, Javier | |
dc.contributor.author | Paulo Papa, Joao | |
dc.contributor.author | Leite, Neucimar | |
dc.contributor.author | da Silva Torres, Ricardo | |
dc.contributor.author | Falcao, Alexandre | |
dc.date.accessioned | 2019-01-29T22:19:56Z | |
dc.date.available | 2019-01-29T22:19:56Z | |
dc.date.issued | 2008 | |
dc.description.abstract | Learning how to extract texture features from noncontrolled environments characterized by distorted images is a still-open task. By using a new rotation-invariant and scale-invariant image descriptor based on steerable pyramid decomposition, and a novel multiclass recognition method based on optimum-path forest, a new texture recognition system is proposed. By combining the discriminating power of our image descriptor and classifier, our system uses small-size feature vectors to characterize texture images without compromising overall classification rates. State-of-the-art recognition results are further presented on the Brodatz data set. High classification rates demonstrate the superiority of the proposed system. | es_PE |
dc.description.uri | Trabajo académico | es_PE |
dc.identifier.doi | https://doi.org/10.1155/2008/691924 | es_PE |
dc.identifier.issn | 16876172 | es_PE |
dc.identifier.uri | https://hdl.handle.net/20.500.12590/15908 | |
dc.language.iso | eng | es_PE |
dc.publisher | Scopus | es_PE |
dc.relation.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-45749084524&doi=10.1155%2f2008%2f691924&partnerID=40&md5=94ff5c1565eccb6cc9b0d2400d9cfaa2 | es_PE |
dc.rights | info:eu-repo/semantics/restrictedAccess | es_PE |
dc.source | Repositorio Institucional - UCSP | es_PE |
dc.source | Universidad Católica San Pablo | es_PE |
dc.source | Scopus | es_PE |
dc.subject | Classification (of information) | es_PE |
dc.subject | Computer networks | es_PE |
dc.subject | Image enhancement | es_PE |
dc.subject | Rotation | es_PE |
dc.subject | Textures | es_PE |
dc.subject | Brodatz | es_PE |
dc.subject | Classification rates | es_PE |
dc.subject | Data sets | es_PE |
dc.subject | Discriminating power | es_PE |
dc.subject | Distorted images | es_PE |
dc.subject | Feature vector (FV) | es_PE |
dc.subject | image descriptor | es_PE |
dc.subject | Invariant features | es_PE |
dc.subject | multiclass recognition | es_PE |
dc.subject | rotation invariant | es_PE |
dc.subject | Steerable pyramid (SP) | es_PE |
dc.subject | Texture features | es_PE |
dc.subject | texture images | es_PE |
dc.subject | Texture recognition | es_PE |
dc.subject | Feature extraction | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.02.00 | es_PE |
dc.title | Learning how to extract rotation-invariant and scale-invariant features from texture images | es_PE |
dc.type | info:eu-repo/semantics/article |