A GH-SOM optimization with SOM labelling and dunn index
dc.contributor.author | Bokan Garay, Alessandro | |
dc.contributor.author | Ponce Contreras, Guillermo | |
dc.contributor.author | Patiño Escarcina, Raquel | |
dc.date.accessioned | 2019-01-29T22:19:55Z | |
dc.date.available | 2019-01-29T22:19:55Z | |
dc.date.issued | 2011 | |
dc.description.abstract | Clustering is an unsupervised classification method that divides a data set in groups, where the elements of a group have similar characteristics to each other. A well-known clustering method is the Growing Hierarchical Self-Organizing Map (GH-SOM), that improves the results of an ordinary SOM by controlling the number of neurons generated. In this paper it is proposed a optimization of the typical GH-SOM, using a cluster validation index to verify the quality of partitioning. © 2011 IEEE. | es_PE |
dc.description.uri | Trabajo académico | es_PE |
dc.identifier.doi | https://doi.org/10.1109/HIS.2011.6122168 | es_PE |
dc.identifier.isbn | urn:isbn:9781457721502 | es_PE |
dc.identifier.uri | https://hdl.handle.net/20.500.12590/15891 | |
dc.language.iso | eng | es_PE |
dc.publisher | Scopus | es_PE |
dc.relation.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856748692&doi=10.1109%2fHIS.2011.6122168&partnerID=40&md5=84d450a8bb887d678d92546afd361157 | es_PE |
dc.rights | info:eu-repo/semantics/restrictedAccess | es_PE |
dc.source | Repositorio Institucional - UCSP | es_PE |
dc.source | Universidad Católica San Pablo | es_PE |
dc.source | Scopus | es_PE |
dc.subject | Cluster validation | es_PE |
dc.subject | Clustering methods | es_PE |
dc.subject | Data sets | es_PE |
dc.subject | Growing hierarchical self-organizing maps | es_PE |
dc.subject | Unsupervised classification | es_PE |
dc.subject | Intelligent systems | es_PE |
dc.subject | Optimization | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.02.00 | es_PE |
dc.title | A GH-SOM optimization with SOM labelling and dunn index | es_PE |
dc.type | info:eu-repo/semantics/conferenceObject |