Assertion role in a hybrid link prediction approach through probabilistic ontology

dc.contributor.authorArmada, Marcius
dc.contributor.authorRevoredo, Kate
dc.contributor.authorLuna, J.
dc.contributor.authorCozman, F.
dc.date.accessioned2019-01-29T22:19:55Z
dc.date.available2019-01-29T22:19:55Z
dc.date.issued2013
dc.description.abstractLink prediction in a network is mostly based on information about the neighborhood topology of the nodes. Recently, the interest for hybrid link prediction approaches that combine topology information with information about the network individuals, has grown. However, considering the whole set of individuals may not be necessary and sometimes not even suitable. Therefore, mechanisms to automatically discover the relevant set of individuals are demanding. In this paper, we encompass this problem by proposing an algorithm that combines structure and semantic metrics to find the set of relevant individuals. We empirically evaluate this proposal analyzing the assertion role of these individuals when predicting a link through a probabilistic ontology.es_PE
dc.description.uriTrabajo de investigaciónes_PE
dc.identifier.issn16130073es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12590/15879
dc.language.isoenges_PE
dc.publisherCEUR-WSes_PE
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84922523322&partnerID=40&md5=817288f15cf814fe76247cadb0023209es_PE
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_PE
dc.sourceRepositorio Institucional - UCSPes_PE
dc.sourceUniversidad Católica San Pabloes_PE
dc.sourceScopuses_PE
dc.subjectSemanticses_PE
dc.subjectTopologyes_PE
dc.subjectLink predictiones_PE
dc.subjectNeighborhood topologyes_PE
dc.subjectProbabilistic ontologieses_PE
dc.subjectSemantic metricses_PE
dc.subjectTopology informationes_PE
dc.subjectForecastinges_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.02.00es_PE
dc.titleAssertion role in a hybrid link prediction approach through probabilistic ontologyes_PE
dc.typeinfo:eu-repo/semantics/conferenceObject
Files