A New Improvement of Human Bodies Detection

dc.contributor.authorCervantes Jilaja, Claudia
dc.contributor.authorTejada Begazo, Maria
dc.contributor.authorPatiño Escarcina, Raquel Esperanza
dc.contributor.authorBarrios Aranibar, Dennis
dc.date.accessioned2019-01-29T22:19:53Z
dc.date.available2019-01-29T22:19:53Z
dc.date.issued2016
dc.description.abstractThe HOG method is applied in the detection of human bodies in an vertical position. However, when human bodies are in other positions, HOG method has several fails, another disadvantage of this method is the occlusion of human bodies by objects. This research presents a new improvement to HOG method with erosion morphological operator and cascade classifier (vector points describing the face of a person). The experiments show that the improved HOG method add erosion operator and classifier of faces (MFHD, Morphological Face HOG Detection) in 79.02% with respect the HOG method whose percentage is 64.46%. © 2015 IEEE.es_PE
dc.description.uriTrabajo de investigaciónes_PE
dc.identifier.doihttps://doi.org/10.1109/LARS-SBR.2015.53es_PE
dc.identifier.isbnurn:isbn:9781467371292es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12590/15840
dc.language.isoenges_PE
dc.publisherInstitute of Electrical and Electronics Engineers Inc.es_PE
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84964345034&doi=10.1109%2fLARS-SBR.2015.53&partnerID=40&md5=9da9ec6eca204f81f428ae5c37830a1bes_PE
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_PE
dc.sourceRepositorio Institucional - UCSPes_PE
dc.sourceUniversidad Católica San Pabloes_PE
dc.sourceScopuses_PE
dc.subjectClassification (of information)es_PE
dc.subjectErosiones_PE
dc.subjectCascade classifierses_PE
dc.subjectHuman bodieses_PE
dc.subjectMorphological faceses_PE
dc.subjectMorphological operatores_PE
dc.subjectVertical positionses_PE
dc.subjectRoboticses_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.02.00es_PE
dc.titleA New Improvement of Human Bodies Detectiones_PE
dc.typeinfo:eu-repo/semantics/conferenceObject
Files