Segmentation of multi-structures in cardiac MRI using deep learning

dc.contributor.advisorMontoya Zegarra, Javier Alexander
dc.contributor.authorGutierrez Castilla, Nicolas
dc.date.accessioned2021-09-23T03:22:18Z
dc.date.available2021-09-23T03:22:18Z
dc.date.issued2020
dc.description.abstractThe heart is one of the most important organs in our body and many critical diseases are associated with its malfunctioning. To assess the risk for heart diseases, Magnetic Resonance Imaging (MRI) has become the golden standard imaging technique, as it provides to the clinicians stacks of images for analyzing the heart structures, such as the ventricles, and thus to make a diagnosis of the patient’s health. However, the examination of these stacks, often based on the delineation of the heart structures, is a tedious and an error prone task due to inter- and intra-variability in the manual delineations. For this reason, the investigation of fully automated methods to support heart segmentation is paramount. Most of the successful methods proposed to solve this problem are based on deep-learning solutions. Especially, encoder-decoder architectures, such as the U-Net (Ronneberger et al., 2015), have demonstrated to be very effective and robust architectures for medical image segmentation. In this work, we propose to use long-range skip connections on the decoder-part of the architecture to incorporate multi-context information onto the predicted segmentation masks and to improve the generalization of the models (see Figure 1). This new module is named Dense-Decoder module and can be easily added to state-of-the-art encoder-decoder architectures, such as the U-Net, with almost no extra additional parameters allowing the model’s size to remain constant. To evaluate the benefits of our module, we performed experiments on two challenging cardiac segmentation datasets, namely the ACDC (Bernard et al., 2018) and the LVSC (Radau et al., 2009) heart segmentation challenges. Experiments performed on both datasets demonstrate that our method leads to an improvement on both the total Average Dice score and the Ejection Fraction Correlation, when combined with state-of-the-art encoder-decoder architectures. es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.identifier.other1073412
dc.identifier.urihttps://hdl.handle.net/20.500.12590/16852
dc.language.isoenges_PE
dc.publisherUniversidad Católica San Pabloes_PE
dc.publisher.countryPEes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceUniversidad Católica San Pabloes_PE
dc.sourceRepositorio Institucional - UCSPes_PE
dc.subjectDeep Learninges_PE
dc.subjectCardiac Magnetic Resonance Imaginges_PE
dc.subjectImage Segmentationes_PE
dc.subjectMedical Imaginges_PE
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.02.01es_PE
dc.titleSegmentation of multi-structures in cardiac MRI using deep learninges_PE
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_PE
renati.advisor.dni41312254
renati.advisor.orcidhttps://orcid.org/0000-0002-3652-1954es_PE
renati.author.dni73637385
renati.discipline611017es_PE
renati.jurorJoao Paulo Papaes_PE
renati.jurorAlexander Xavier Falcaoes_PE
renati.jurorJosé Eduardo Ochoa Lunaes_PE
renati.levelhttps://purl.org/pe-repo/renati/level#maestro
renati.typehttps://purl.org/pe-repo/renati/type#tesis
thesis.degree.disciplineCiencia de la Computaciónes_PE
thesis.degree.grantorUniversidad Católica San Pablo. Departamento de Ciencia de la Computaciónes_PE
thesis.degree.levelMaestríaes_PE
thesis.degree.nameMaestro en Ciencia de la Computaciónes_PE
thesis.degree.programPrograma Profesional de Ciencia de la Computaciónes_PE
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GUTIERREZ_CASTILLA_NIC_CAR.pdf
Size:
6.74 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: