Paradigmatic Clustering for NLP

dc.contributor.authorSantisteban Pablo, Julio Omar
dc.contributor.authorTejada Cárcamo, Javier
dc.date.accessioned2019-01-29T22:19:53Z
dc.date.available2019-01-29T22:19:53Z
dc.date.issued2016
dc.description.abstractHow can we retrieve meaningful information from a large and sparse graph?. Traditional approaches focus on generic clustering techniques and discovering dense cumulus in a network graph, however, they tend to omit interesting patterns such as the paradigmatic relations. In this paper, we propose a novel graph clustering technique modelling the relations of a node using the paradigmatic analysis. We exploit node's relations to extract its existing sets of signifiers. The newly found clusters represent a different view of a graph, which provides interesting insights into the structure of a sparse network graph. Our proposed algorithm PaC (Paradigmatic Clustering) for clustering graphs uses paradigmatic analysis supported by a asymmetric similarity, in contrast to traditional graph clustering methods, our algorithm yields worthy results in tasks of word-sense disambiguation. In addition we propose a novel paradigmatic similarity measure. Extensive experiments and empirical analysis are used to evaluate our algorithm on synthetic and real data. © 2015 IEEE.es_PE
dc.description.uriTrabajo de investigaciónes_PE
dc.identifier.doihttps://doi.org/10.1109/ICDMW.2015.233es_PE
dc.identifier.isbnurn:isbn:9781467384926es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12590/15843
dc.language.isoenges_PE
dc.publisherInstitute of Electrical and Electronics Engineers Inc.es_PE
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84964770393&doi=10.1109%2fICDMW.2015.233&partnerID=40&md5=26ff37a5a3402b53a73baf00f81bd862es_PE
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_PE
dc.sourceRepositorio Institucional - UCSPes_PE
dc.sourceUniversidad Católica San Pabloes_PE
dc.sourceScopuses_PE
dc.subjectCluster analysises_PE
dc.subjectData mininges_PE
dc.subjectGraph theoryes_PE
dc.subjectNatural language processing systemses_PE
dc.subjectasymmetric similarityes_PE
dc.subjectclusteringes_PE
dc.subjectClustering techniqueses_PE
dc.subjectparadigmatices_PE
dc.subjectSimilarity measurees_PE
dc.subjectSynthetic and real dataes_PE
dc.subjectTraditional approacheses_PE
dc.subjectWord Sense Disambiguationes_PE
dc.subjectClustering algorithmses_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.02.00es_PE
dc.titleParadigmatic Clustering for NLPes_PE
dc.typeinfo:eu-repo/semantics/conferenceObject
Files