Deep neural network approaches for Spanish sentiment analysis of short texts

dc.contributor.authorOchoa Luna, José
dc.contributor.authorAri, Disraeli
dc.date.accessioned2019-01-29T22:19:49Z
dc.date.available2019-01-29T22:19:49Z
dc.date.issued2018
dc.description.abstractSentiment Analysis has been extensively researched in the last years. While important theoretical and practical results have been obtained, there is still room for improvement. In particular, when short sentences and low resources languages are considered. Thus, in this work we focus on sentiment analysis for Spanish Twitter messages. We explore the combination of several word representations (Word2Vec, Glove, Fastext) and Deep Neural Networks models in order to classify short texts. Previous Deep Learning approaches were unable to obtain optimal results for Spanish Twitter sentence classification. Conversely, we show promising results in that direction. Our best setting combines data augmentation, three word embeddings representations, Convolutional Neural Networks and Recurrent Neural Networks. This setup allows us to obtain state-of-the-art results on the TASS/SEPLN Spanish benchmark dataset, in terms of accuracy. © Springer Nature Switzerland AG 2018.es_PE
dc.description.uriTrabajo de investigaciónes_PE
dc.identifier.doihttps://doi.org/10.1007/978-3-030-03928-8_35es_PE
dc.identifier.isbnurn:isbn:9783030039271es_PE
dc.identifier.issn3029743es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12590/15768
dc.language.isoenges_PE
dc.publisherSpringer Verlages_PE
dc.relation.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057122520&doi=10.1007%2f978-3-030-03928-8_35&partnerID=40&md5=db7e538bea67ed5945193b24af816b0bes_PE
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_PE
dc.sourceRepositorio Institucional - UCSPes_PE
dc.sourceUniversidad Católica San Pabloes_PE
dc.sourceScopuses_PE
dc.subjectData mininges_PE
dc.subjectRecurrent neural networkses_PE
dc.subjectSentiment analysises_PE
dc.subjectSocial networking (online)es_PE
dc.subjectBenchmark datasetses_PE
dc.subjectConvolutional neural networkes_PE
dc.subjectData augmentationes_PE
dc.subjectLearning approaches_PE
dc.subjectNeural networks modeles_PE
dc.subjectSentence classificationses_PE
dc.subjectTwitter sentenceses_PE
dc.subjectWord representationses_PE
dc.subjectDeep neural networkses_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.02.00es_PE
dc.titleDeep neural network approaches for Spanish sentiment analysis of short textses_PE
dc.typeinfo:eu-repo/semantics/article
Files