Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • Guidelines
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Quispe Pinares, Jefferson"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Detección automática personalizada de la intensidad del dolor de expresiones faciales en video usando multitask learning
    (Universidad Católica San Pablo, 2023) Quispe Pinares, Jefferson; Camara Chavez, Guillermo
    Los métodos de Aprendizaje Profundo han logrado resultados impresionantes en varias tareas complejas como la estimación del dolor a partir de expresiones faciales en videos (secuencias de frames). La estimación de dolor es difícil de medir, debido a que es subjetiva y a las características propias de cada persona. Sin embargo, su estimaci´on es importante para procesos de evaluación clínica. Este trabajo de investigación propone la estimación de la intensidad del dolor automático a través de dos etapas: 1) mediante un enfoque de frame-level usando Convolutional Neural Network, (CNN) con Transferencia de Aprendizaje de un modelo preentrenado de rostros con un módulo de Atención Espacial y modelos secuenciales usando Recurrent Neural Network (RNN) para obtener una estimación más precisa del dolor; 2) estimación de la medida del dolor usando Visual Analog Score (VAS) y las otras escalas de dolor mediante Multitask Learning (MTL) personalizado con frame-level obtenido de la primera etapa con características personales de un individuo; lo que nos permite lograr resultados importantes de dolor por sequence-level. El uso del enfoque de MTL para personalizar las estimaciones mediante la realización de múltiples tareas en grupos de personas similares junto a semejantes tareas, proporciona mejoras importantes en el rendimiento de la predicción del VAS. La mejora en la precisión es notable con respecto a los modelos no personalizados obteniendo 2.25 usando la métrica MAE y 0.47 en ICC usando el modelo denominado PSPI+PF Personalized Multitask. Por otro lado tenemos los datos obtenidos de la base de datos reales para entrenar, el cual es de 2.17 usando la m´etrica MAE y 0.51 de ICC según el modelo PSPI (GT) Personalized Multitask.
Contacto
Jorge Luis Román Yauri
Correo
jroman@ucsp.edu.pe
COPYRIGHT © 2024 Universidad Católica San Pablo