Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • Guidelines
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ocsa, Alexander"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    DB-GNG: A constructive self-organizing map based on density
    (Scopus, 2007) Ocsa, Alexander; Bedregal, Carlos; Cuadros Vargas, Ernesto
    Nowadays applications require efficient and fast techniques due to the growing volume of data and its increasing complexity. Recent studies promote the use of Access Methods (AMs) with Self-Organizing Maps (SOMs) for a faster similarity information retrieval. This paper proposes a new constructive SOM based on density, which is also useful for clustering. Our algorithm creates new units based on density of data, producing a better representation of the data space with a less computational cost for a comparable accuracy. It also uses AMs to reduce considerably the Number of Distance Calculations during the training process, outperforming existing constructive SOMs by as much as 89%. ©2007 IEEE.
  • No Thumbnail Available
    Item
    DBM*-Tree: An efficient metric acces method
    (Scopus, 2007) Ocsa, Alexander; Cuadros Vargas, Ernesto
    In this paper we propose a new dynamic Metric Access Method (MAM) called DBM*-Tree, which uses precomputed distances to reduce the construction cost avoiding repeated calculus of distance. Making use of the pre-calculated distances cost of similarity queries are also reduced by taking various local representative objects in order to increment the pruning of irrelevant elements during the query. We also propose a new algorithm to select the suitable subtree in the insertion operation, which is an evolution of the previous methods. Empiric tests on real and synthetic data have shown evidence that DBM*-Tree requires 25 % less average distance computing than Density Based Metric Tree (DBM-Tree) which is one of the most efficient and recent MAM found in the literature. © Copyright 2007 ACM.
Contacto
Jorge Luis Román Yauri
Correo
jroman@ucsp.edu.pe
COPYRIGHT © 2024 Universidad Católica San Pablo