Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • Guidelines
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Muroya Lei, Stefanie"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Quantum exordium for natural language processing: a novel approach to sample on decoders
    (Universidad Católica San Pablo, 2021) Muroya Lei, Stefanie; Ochoa Luna, Jose Eduardo
    The sampling task of Seq2Seq models in Natural Language Processing (NLP) is based on heuristics because of the Non-Deterministic Polynomial Time (NP) nature of this problem. The goal of this research is to develop a quantum sampler for Seq2Seq models, and give evidence that Quantum Annealing (QA) can guide the search space of these samplers. The contribution of this work is given by showing an architecture to represent Recurrent Neural Networks (RNN) in a quantum computer to finally develop a quantum sampler. The individual architectures (i.e. summation, multiplication, argmax, and activation functions) achieve optimal accuracies in both simulated and quantum environments. While the results of the overall proposal show that it can either outperform or match greedy approaches. As the very first steps of quantum NLP, these are tested against simple RNN with a synthetic data set of random numbers, and a real quantum computer is utilized. Since affine functions are the basis of most Artificial Intelligence (AI) models, this method can be applied to more complex architectures in the future.
  • Loading...
    Thumbnail Image
    Item
    Quantum exordium for natural language processing: A novel approach to sample on decoders
    (Universidad Católica San Pablo, 2021) Muroya Lei, Stefanie; Ochoa Luna, Jose Eduardo
    The sampling task of Seq2Seq models in Natural Language Processing (NLP) is based on heuristics because of the Non-Deterministic Polynomial Time (NP) nature of this problem. The goal of this research is to develop a quantum sampler for Seq2Seq models, and give evidence that Quantum Annealing (QA) can guide the search space of these samplers. The contribution of this work is given by showing an architecture to represent Recurrent Neural Networks (RNN) in a quantum computer to finally develop a quantum sampler. The individual architectures (i.e. summation, multiplication, argmax, and activation functions) achieve optimal accuracies in both simulated and quantum environments. While the results of the overall proposal show that it can either outperform or match greedy approaches. As the very first steps of quantum NLP, these are tested against simple RNN with a synthetic data set of random numbers, and a real quantum computer is utilized. Since ane functions are the basis of most Artificial Intelligence (AI) models, this method can be applied to more complex architectures in the future.
Contacto
Jorge Luis Román Yauri
Correo
jroman@ucsp.edu.pe
COPYRIGHT © 2024 Universidad Católica San Pablo