Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • Guidelines
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Delgado Mattos, Alessandra Daniela"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Recomendación musical a partir de la selección de características relevantes de alto nivel mediante las estructuras métricas LAESA y Omni secuencial
    (Universidad Católica San Pablo, 2015) Delgado Mattos, Alessandra Daniela; Meza Lovón, Graciela
    En los últimos años la cantidad de aplicaciones orientadas a la industria musical ha incrementado considerablemente. Las opciones que estas nuevas aplicaciones ofrecen cada vez se van tornando m´as complejas y sofisticadas, puesto que las expectativas de los usuarios se van haciendo más exigentes. Hoy en día ya no basta con aplicaciones musicales que so´lo sirvan como simples reproductores de archivos de audio, los usuarios precisan de m´as opciones y funcionalidades, siendo uno de estos, los sistemas automáticos de recomendación musical basado en los gustos y preferencias de dicho usuario. Entonces para poder obtener una recomendación musical óptima se enfrentan tres problemas, el primero es como extraer la información musical, ya que existen diversas maneras de hacerlo, el segundo problema es la selección de la información extraída para poder clasificar los archivos musicales y finalmente la indexación de los archivos musicales bajo criterios de similitud para poder organizar la música. Estos problemas se resuelven utilizando características de alto nivel mediante la extracción de información de los metadatos y archivos MIDI, seleccionar las características obtenidas haciendo uso de dos métodos de selección de características mRMR y SIR y finalmente indexar los datos obtenidos en una estructura métrica que permita realizar las consultas requeridas generando una recomendación musical más óptima. Se obtuvo hasta 57% de eficacia en la recomendación por género y hasta 0,87 utilizando la métrica precisión en cuánto a la similitud de las canciones recomendadas hacia la ingresada por el usuario.
Contacto
Jorge Luis Román Yauri
Correo
jroman@ucsp.edu.pe
COPYRIGHT © 2024 Universidad Católica San Pablo