Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • Guidelines
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bedregal, Carlos"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    DB-GNG: A constructive self-organizing map based on density
    (Scopus, 2007) Ocsa, Alexander; Bedregal, Carlos; Cuadros Vargas, Ernesto
    Nowadays applications require efficient and fast techniques due to the growing volume of data and its increasing complexity. Recent studies promote the use of Access Methods (AMs) with Self-Organizing Maps (SOMs) for a faster similarity information retrieval. This paper proposes a new constructive SOM based on density, which is also useful for clustering. Our algorithm creates new units based on density of data, producing a better representation of the data space with a less computational cost for a comparable accuracy. It also uses AMs to reduce considerably the Number of Distance Calculations during the training process, outperforming existing constructive SOMs by as much as 89%. ©2007 IEEE.
  • No Thumbnail Available
    Item
    Using large databases and self-organizing maps without tears
    (Scopus, 2006) Bedregal, Carlos; Cuadros Vargas, Ernesto
    Nowadays the need to process lots of complex multimedia databases is more frequent. Recent investigations such as MAM-SOM* and SAM-SOM* families propose the combination of Self-Organizing Maps (SOM) with Access Methods for a faster similarity information retrieval. In this investigation we present experimental results using recent Access Methods such as Slim-Tree and Omni-Sequential that show the improvement acquired by these techniques and their properties in contrast with a traditional SOM network, observing up to 90% of performance improvement. © 2006 IEEE.
Contacto
Jorge Luis Román Yauri
Correo
jroman@ucsp.edu.pe
COPYRIGHT © 2024 Universidad Católica San Pablo